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In an article, “The Polymerization of Some Derivatives of Trimethylaluminium”, 
published in 1942 Davidson and Brown described the syntheses and characteriza- 
tion of a series of organoaluminium compounds [l]. Over the years we have 
determined the molecular structure of several of them by gas electron diffraction, 
viz. Me, AlNMe, [2], Me, AlPMe, [3], Me, AlOMe, [4] and Me, AlSMe, [5], 
(MezAlOMe), [6], (Me,AlSMe), [7] and (Me,AlCl), [8] *. In this note, which we 
dedicate to Davidson and Brown, we report the structure of the eighth compound, 
(Me,AlPMe,),. 

Within a series of trimeric, dimeric and monomeric diorganoaluminium phos- 
phides, prepared by the reaction of the appropriate diorganoaluminium chloride 
with a lithium diorgano phosphide [ll], we have prepared [Me,AlPMe,], as 
colorless crystals (m.p. 145°C). The ‘H NMR spectrum shows two quartetts of 
equal intensity at +0.61 and -0.89 ppm ((X,A) (AX;), spin system). 

The gas electron diffraction pattern was recorded on Balzers Eldigraph KDG-2 
with nozzle and reservoir temperatures of about 170°C. Exposures were made with 
nozzle-to-plate distances of 50 and 25 cm. Six plates from the first set and five from 
the second were photometered and the data processed by standard procedures. The 
intensity data thus obtained ranged from s = 20 to 250 nm-‘. 

Structure refinements were based on a chair model of C,, symmetry as indicated 
in Fig. 1. In addition it was assumed that: (i) Me,AlP, and Me,PAl, fragments 
have C,, symmetry. (ii) Me groups have C’,, with symmetry axes coinciding with the 
C-Al or C-P bonds. (Al)C-H and (P)C-H bond lengths were assumed equal. The 
valence angle PCH could not be refined and was fixed at 110.7O, as in PMe, [12]. 
Finally the methyl groups were fixed in staggered positions as indicated in Fig. 1. 

* (Me,AlNMe,), has been studied by X-ray crystallography [9,10]. 
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Fig. 1. Molecular model of (Me2AlPMe2)3. Symmetry C,,,. Most of the hydrogen atoms have been 
omitted for clarity. 

Least-squares refinement of nine structure parameters and thirteen r.m.s. ampli- 
tudes of vibration led to satisfactory agreement between experimental and calcu- 
lated intensity values: R, = [Cw( I,_ - Ic,,)2/CwI&,] = 0.044. The best values 
obtained for bond distances and valence angles were: Al-P 243.4(4), P-C 184.6(3), 
Al-C 196.9(7), and C-H 109.1(5) pm; PAlP 96.4(7), AlPAl 131.7(g), CAlC 124(2), 
CPC 99(2), and AlCH 112(2)O. 

The Al-P bonds in (Me,AlPMe,), may be regarded as 50% dative and 50% 
covalent. They are a few pm shorter than the purely dative bonds in Ia (R = R’ = 
Me); Al-P 245.1(2) pm [13], II (Ph = phenyl); Al-P 252.6(3) and 254.3(3) pm [14] 
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and in Me,AlPMe,; Al-P 253(4) pm [3]. The dative bonds in Ib (R = Cl, R’ = 
CH,PMe,); Al-P 242.5(l) pm [13] are shorter, perhaps owing to the inductive 
effect of the electronegative Cl atoms. 

The coordination around Al and P is distorted from ideal tetrahedral in the 
direction predicted by the Valence Shell Electron Pair Repulsion Model. 
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